U. S. Department of Commerce Maurice H. Stans Secretary National Byreath of Standards L. M. Bransconf, Director

Certificate of Analysis STANDARD REFERENCE MATERIAL 166c Low-Carbon Stainless Steel (AISI 316L)

Analyst	Method	Carbon (percent)
1 2 3 4 5 6 7 7	Chromatographic ^a , ^b Chromatographic ^a , ^c Chromatographic ^a , ^d Chromatographic ^a , ^e Chromatographic ^f , ^g Chromatographic ^a , ^h Chromatographic ^a , ⁱ Gravimetrici Average	0.0077 .0078 .0078 .0076 .0079 .0081 .0077 .0079

^a lg sample combusted by induction heating

 $^{\rm g}{\rm Calibration}$ based on NBS 131b and by ${\rm CO}_2$ introduced by syringe

hCalibration based on NBS 55e and German Standard

ⁱCalibration based on NBS 55e and 131b

^j5g sample combusted by resistance heating

The material for this standard was prepared in powder form by water atomization at the Hoeganaes Corporation, Riverton, New Jersey. The material has been sized between 25 and 200 mesh sieves.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmanships of O. Menis and J. I. Shultz.

The technical and support aspects involved in the preparation, certification, and issuance of this standard reference material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

Washington, D. C. 20234 March 17, 1970 J. Paul Cali, Acting Chief Office of Standard Reference Materials

^bCalibration based on NBS 166b

^cCalibration based on NBS 131a and 166b

dCalibration based on NBS 55e, 131b and 335

^eCalibration based on NBS 55e

¹0.5g sample combusted by resistance heating

List of Analysts

- 1. J. R. Baldwin and S. A. Wicks, Analytical Chemistry Division, Institute for Materials Research, National Bureau of Standards.
- 2. J. C. Cline, Globe Metallurgical, Division of the Interlake Steel Corporation, Beverly, Ohio.
- 3. M. Dannis, P. Wombold and L. C. Bartels, Armco Steel Corporation, Middletown, Ohio.
- 4. R. B. Fricioni, Allegheny Ludlum Steel Corporation, Brackenridge, Pennsylvania.
- 5. L. Melnick, J. Martin, R. C. Takacs, and R. N. Kaminsky, Applied Research Laboratory, United States Steel Corporation, Monroeville, Pennsylvania.
- 6. G. Helling, Laboratory Equipment Corporation, St. Joseph, Michigan.
- 7. F. P. Byrne, Research and Development Center, Westinghouse Electric Corporation, Pittsburgh Pennsylvania.